Molecular recognition of naphthalene diimide ligands by telomeric quadruplex-DNA: the importance of the protonation state and mediated hydrogen bonds.
نویسندگان
چکیده
In depth Monte Carlo conformational scans in combination with molecular dynamics (MD) simulations and electronic structure calculations were applied in order to study the molecular recognition process between tetrasubstituted naphthalene diimide (ND) guests and G-quadruplex (G4) DNA receptors. ND guests are a promising class of telomere stabilizers due to which they are used in novel anticancer therapeutics. Though several ND guests have been studied experimentally in the past, the protonation state under physiological conditions is still unclear. Based on chemical intuition, in the case of N-methyl-piperazine substitution, different protonation states are possible and might play a crucial role in the molecular recognition process by G4-DNA. Depending on the proton concentration, different nitrogen atoms of the N-methyl-piperazine might (or might not) be protonated. This fact was considered in our simulation in terms of a case by case analysis, since the process of molecular recognition is determined by possible donor or acceptor positions. The results of our simulations show that the electrostatic interactions between the ND ligands and the G4 receptor are maximized in the case of the protonation of the terminal nitrogen atoms, forming compact ND G4 complexes inside the grooves. The influence of different protonation states in terms of the ability to form hydrogen bonds with the sugar-phosphate backbone, as well as the importance of mediated vs. direct hydrogen bonding, was analyzed in detail by MD and relaxed force constant (compliance constant) simulations.
منابع مشابه
A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex
DNA telomeric repeats in mammalian cells are transcribed to guanine-rich RNA sequences, which adopt parallel-stranded G-quadruplexes with a propeller-like fold. The successful crystallization and structure analysis of a bimolecular human telomeric RNA G-quadruplex, folded into the same crystalline environment as an equivalent DNA oligonucleotide sequence, is reported here. The structural basis ...
متن کاملMechanism of the antiproliferative activity of some naphthalene diimide G-quadruplex ligands.
G-quadruplexes are higher-order nucleic acid structures that can form in G-rich telomeres and promoter regions of oncogenes. Telomeric quadruplex stabilization by small molecules can lead to telomere uncapping, followed by DNA damage response and senescence, as well as chromosomal fusions leading to deregulation of mitosis, followed by apoptosis and downregulation of oncogene expression. We rep...
متن کاملSynthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes
We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 long terminal repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding toward the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromat...
متن کاملDivalent Naphthalene Diimide Ligands Display High Selectivity for the Human Telomeric G‐quadruplex in K+ Buffer
Selective G-quadruplex ligands offer great promise for the development of anti-cancer therapies. A novel series of divalent cationic naphthalene diimide ligands that selectively bind to the hybrid form of the human telomeric G-quadruplex in K+ buffer are described herein. We demonstrate that an imidazolium-bearing mannoside-conjugate is the most selective ligand to date for this quadruplex agai...
متن کاملGuanine (G)‐quadruplexes (G‐4) are non‐canonical nucleic acid conformations formed by G‐rich sequences based on the formation of G‐quartets, stabilized by Hoogsteen‐type hydrogen bonds between G and by interaction with cations
naphthalene diimide (nDi) derivatives have shown high affinity for telomeric guanine (G)‐quadruplexes and good antiproliferative activity in different human tumor experimental models. A trisubstituted compound (H‐NDI‐NMe2) has been reported to stabilize the telomeric G‐quadruplex and to cause telomere dysfunction and downregulation of telomerase expression. We further investigated its mechanism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2016